Why “% deviation from trailing average” indicators on dashboards aren’t helpful (book excerpt)

As I’ve discussed in a previous blog post, a dashboard that doesn’t visually flag metrics that require attention will likely flop with users. In fact, the lack of such indicators could be the number one reason why so many dashboards fail to deliver acceptable levels of user satisfaction and traction.

While not as common on dashboards as other flagging methods, participants in my Practical Dashboards workshops often ask about “% deviation from trailing average”, so I’ve written this post to illustrate why that method actually isn’t much better than the more common alternatives.

Read more

Remembering Charles Assey

In the before-times, I taught workshops in over a dozen countries and, without a doubt, the most interesting and beautiful one was Tanzania. Those workshops were organized by Charles Assey, a management consultant and senior advisor at the Bank of Tanzania.

Charles passed away on June 11th from a long-term illness. This news hit me quite hard since Charles was one of the most remarkable people that I’ve ever met. More than just a brilliant management consultant, Charles had an almost shocking amount of integrity and was one of those rare people who had both the ability and the genuine desire to make the world a better place. This is probably why he was well-connected and admired among global experts in reporting and performance measurement.

Charles always had the courage and selflessness to downplay his illness and deflect any concern about it, and it was devastating to learn that it caught up with him. In a year with so many losses, this one stands out as particularly painful and unfair.

 
charles-nick.jpg
 

The (Scary) Power of Data Storytelling

Much has been written in recent years about how powerful data storytelling can be, and that’s certainly true. As the saying goes, though, with great power comes great responsibility. Someone who’s great at storytelling is, almost by definition, also great at suppressing the audience’s ability to think critically about what they’re hearing. If we get carried away and start crafting the data around the story instead of the other way around, great storytelling makes that harder for audiences to notice.

Read more

What, exactly, makes one chart better than another?

When people disagree on whether one chart design is better or worse than another, they often have quite different assumptions about what “better” actually means when it comes to charts. Depending on the person, “better” could variously mean more precise, more creative, more familiar, faster to visually process, more inspiring, more neutral, more versatile, more memorable, or any one of several other quite distinct definitions. Agreeing on a common definition of “better” will allow the data viz field to move past some longstanding controversies and make it much easier for novices to learn how to create truly useful charts.

Read more

Why a dashboard on its own won’t improve performance

A short video interview with performance measurement and improvement expert Louise Watson, in which she explains why a dashboard on its own won’t improve organizational performance. We also cover some of the common bad practices that torpedo performance improvement initiatives, as well as key elements that are required beyond just having a dashboard. Some absolute gems for anyone who’s ever struggled with how to choose the right KPIs.

Read more

Highlight “obviously wrong” values on dashboards!

Because errors do happen, our dashboards will sometimes contain “obviously wrong” metric values, such as a “Customer Satisfaction Rating” of 12.5 on 10, or a “Manufacturing Defect Rate” of -14%. It’s essential that our dashboards be “smart” enough to detect such obviously wrong values so that we can visually flag them as incorrect on the dashboard. If we don’t flag obviously wrong values, users will likely notice them anyway, putting the accuracy of every other value on the dashboard into question.

Read more

How to hire a data visualization pro (or become one)

Organizations often ask me how to hire people who can create better charts for their decision-makers and this post summarizes my (current) answer to that question. While this post is written as a guide for employers, it can, of course, also act as a guide for those who want to become data visualization professionals themselves and work for the organizations that so urgently need those skills.

Read more

Why expert graphic designers, data analysts, and software power users can still make bad charts

As I discuss in the pre-workshop video for my Practical Charts course, many charts don’t do a great job of serving the purpose for which the chart was created in the first place. I think that there are several reasons why this is such a common problem and this post focuses on a big one, which is that there’s a lot of confusion around exactly what skills are needed in order to create truly useful charts.

Read more

My favorite chart type

I regularly hear or read comments such as, “Scatter plots are the most useful chart type”, “I love bullet graphs”, or “Clustered bars are better than stacked bars.” In this post, I discuss why these kinds of preconceived preferences or inclinations to use one chart type over another don’t really make sense.

Read more

Automatically flag metrics that require attention on dashboards using statistics (book excerpt)

In order to gain traction and acceptance among users, dashboards must visually flag metrics that are underperforming, overperforming, or behaving in other ways that warrant attention. If a dashboard doesn’t flag metrics, it becomes very time-consuming for users to review the dashboard and spot metrics that require attention among a potentially large number of metrics, and metrics that urgently require attention risk going unnoticed. In previous blog posts, I discussed several common ways to determine which metrics to flag on a dashboard, including good/satisfactory/poor ranges, % change vs. previous period, % deviation from target, and the “four-threshold” method. Most of these methods, however, require users to manually set alert levels for each metric so that the dashboard can determine when to flag it, but users rarely have the time set flags for all of the metrics on a dashboard. Techniques from the field of Statistical Process Control can be used to automatically generate reasonable default alert levels for metrics that users don’t have time to set levels for manually.

Read more

A friendlier dot plot?

Dot plots are a very useful chart type, but many people have trouble understanding them when they see one for the first time, which probably explains why they’re not widely used. In this post, Xan Gregg of JMP and I propose changes to the traditional dot plot design that might make them easier for first-time viewers to understand and, hopefully, make the use of this valuable chart type more widespread.

Read more